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C.1 Partisans

C.1.1 Model with Partisans

We have so far assumed that all agents have the same preferences, namely they
want the policy to match the state of the world. Now, we introduce agents who
try to induce a specific policy regardless of the state of the world, e.g., due to
the expectation of personal perquisites. We call them A-partisans or B-partisans
according to their preferred policy. Throughout we assume that the number of A-
partisans equals the number of B-partisans. We introduce partisans into the specific
model of section 2 as members of the set M who can potentially communicate with
non-experts in N . Non-experts cannot directly observe whether “their” sender is an
expert or a partisan, but the number of experts mE and the number of partisans
mA = mB are known.

Formally, we assume that the network g is given and that nature draws an
allocation of the given experts and partisans to the nodes in M . Assuming that
each allocation has the same probability, the probability that a given sender is an
expert is simply mE

m
. We consider the position of each expert or partisan as her

private information. Since partisans have no incentive to utilize signals about the
true state of the world, we assume that they do not receive a signal.

We extend the definition of the two focal strategy profiles σ∗ (LTED) and σ̂
(sincere) to the model with partisans by assuming that the latter communicate and
vote their preferred alternative.1 For each partisan j voting and communicating

1Since there is a random draw of experts and partisans to positions in M , formally, the strategy
space is defined slightly differently than in the baseline model. This has no consequences for the
results of this section.
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the preferred alternative is a best response to σ∗−j, respectively to σ̂−j. For the
LTED strategy profile σ∗ we assume that all non-experts abstain independent of
their received message.

The notion of informational efficiency of Definition 2.1 still applies to this exten-
sion of the model. Note, however, that an informationally efficient strategy profile
only maximizes the expected utility of all experts and non-experts, but generally
not of any partisan.

The extension of the baseline model that incorporates partisans does not alter
the results we have established so far. In particular, given that the number of A-
partisans equals the number of B-partisans, Propositions 2.1, 2.2, and 2.3 carry over.
This is formally shown as Propositions C.1, C.2, and C.3 in the next subsection.

C.1.2 Propositions with Partisans

Proposition C.1. In the model with an equal number of partisans (mA = mB),
there exist efficient equilibria for any network structure. For instance, the LTED
strategy profile σ∗ is efficient and an equilibrium for any network structure.

Proof. Since the votes of the partisans balance each other out, the LTED strategy
profile σ∗ always implements the majority signal and is hence efficient. Therefore, it
maximizes the expected utility for any expert and any non-expert.2 Thus, we only
have to check potential deviations of partisans. Deviations in the communication
strategy are ineffective because all members of the audience abstain unconditionally
under σ∗. Changing the voting action cannot increase expected utility because an A-
partisan cannot increase the likelihood that A is chosen when deviating from voting
for A; and analogously for B-partisans.

Proposition C.2. In the model with an equal number of partisans (mA = mB), the
sincere strategy profile σ̂ is efficient if and only if the network is strongly balanced.
The sincere strategy profile σ̂ is an equilibrium if (a) the network is strongly balanced,
and only if (b) the network is weakly balanced.3

Proof. We first address strong balancedness and then turn to weak balancedness.
Strong balancedness. We first show equivalence between strong balancedness

and efficiency of σ̂. Generally, a strategy profile is efficient if and only if the outcome
is A whenever A∗ is the majority signal and the outcome is B whenever the A∗ is the
minority signal (recall that the number of experts is odd and hence the number of
signals is odd as well). Strong balancedness requires that

∑
j∈M ′ dj ≥

∑
k∈M\M ′ dk,

for the set M ′ ⊂ M which consists of the m′ = m+1
2

experts/partisans with the
lowest degree. Since every set M ′′ ⊂ M of size m′′ = m+1

2
has a weakly larger sum

of degrees than M ′, strong balancedness is equivalent to the statement that every

2With the presence of partisans efficient strategy profiles are not automatically equilibria any-
more, but efficient strategy profiles with partisans who cannot improve are.

3Strong and weak balancedness are defined in Definition 2.2. Since the set M now also con-
sists of partisans, the wording of the definition can be extended from “experts” j ∈ M to “ex-
perts/partisans” j ∈M .
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set of experts/partisans M ′′ ⊂M with at least m+1
2

members is involved in at least
half of all links, i.e.

∑
j∈M ′′ dj ≥

∑
k∈M\M ′′ dk.

For a given draw of nature denote by S the set of experts who have received
signal A∗. Consider that under σ̂ a non-expert i votes A if and only if he is either
linked to an expert who has received signal A∗ or to an A-partisan. Hence, the
total number of A-votes is |S|+ |MA|+

∑
j∈(S∪MA) dj, where MA denotes the set of

A-partisans.
Suppose w.l.o.g. that A∗ is the majority signal. Then |S| ≥ m+1

2
and strong

blancedness implies that
∑

j∈(S∪MA) dj ≥
∑

k∈(M\(S∪MA)) dk. Thus, the number of
non-experts who vote for A is larger or equal than the number of non-experts who
vote for B. Noticing that the number of partisans is equal (mA = mB) and that
there are more experts who vote for A than experts who vote for B yields that A
is implemented. Thus, the majority signal is implemented whenever the network is
strongly balanced.

Now, suppose that the network is not strongly balanced. Then by Definition 2.2
the set M ′ ⊂ M , which consists of the m′ = m+1

2
experts/partisans with the lowest

degree, is not involved in at least half of all links, i.e.
∑

j∈M ′ dj <
∑

k∈M\M ′ dk. Con-

sider the following draw of nature: AllmA(< m′)A-partisans are allocated to i ∈M ′,
no B-partisan is, all experts in M ′ receive signal A∗, and no expert with signal B∗

does. Since mA = mB and m′ = m+1
2

, A∗ is the majority signal (there are m+1
2
−mA

A∗-signals and m−1
2
−mB B∗-signals). However, the number of B-votes is at least

the number of A-votes because there is only one more expert voting A than B, while
by the violation of strong balancedness there is at least one more non-expert who
votes B. Thus, a violation of strong balancedness implies inefficiency of σ̂. Thereby,
we have established that σ̂ is efficient if and only if the network is strongly balanced.

Now, suppose strong balancedness is satisfied. Then σ̂ is efficient and, hence, ex-
perts and non-experts cannot improve by deviating. When an A-partisan effectively
deviates from σ̂ either she or her audience stops voting for A. This does not increase
the likelihood that A is implemented. This holds analogously for B-partisans. Thus,
there is no profitable deviation for any player.

Weak Balancedness. Suppose weak balancedness is violated. Then by Defini-
tion 2.2 there is a expert/partisan j with a non-empty setMj such that ∀M ′′ ∈Mj

we have m′′ < m+1
2

. Recall that the set Mj consists of all subsets M ′′ ⊆ M that
contain expert/partisan j and form a slight majority when adding their audiences
of non-experts, i.e.

∑
k∈M ′′(dk + 1)−

∑
l∈M\M ′′(dl + 1) ∈ {0, 1, 2}. If for some draw

of nature all A-partisans belong to such a set M ′′ and all experts receive signal A∗

if and only if they belong to M ′′, then the outcome under σ̂ is that A receives 0, 1,
or 2 votes more than B.

Consider now a draw of nature such that the particular j of above is an expert
with signal A∗. Under σ̂, j would vote for A. Consider the deviation of j to vote B.
Let S denote the set of experts (including j) who have received signal A∗ and MA

the set of A-partisans. If (S ∪MA) /∈ Mj, then the deviation has not affected the
outcome since it only turns one vote from A to B, which can only affect outcomes
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in which A wins by 0, 1, or 2 votes. If (S ∪MA) ∈ Mj, then the deviation has
turned the outcome from A to B, or from A to a tie, or from a tie to B. This
improves expected utility if the probability that B is the true state is larger than
that A is true. By the property that ∀M ′′ ∈ Mj, we have m′′ < m+1

2
, there are

more B∗-signals than A∗-signals such that B is indeed more likely to be true than
A. Hence, when weak balancedness is violated there is a beneficial deviation from
σ̂.

Proposition C.3. In the model with an equal number of partisans (mA = mB),
there are networks in which the sincere strategy profile σ̂ is both an equilibrium and
exhibits informational inefficiency.

Proof. We show the proposition by an example. Let m = 7, mA = mB = 2,
and n = 4. Let the network structure be as in the weakly balanced network of
the experimental treatments in Study II (i.e., the second network in the lower
panel of Figure 3) such that the degree distribution of the experts and partisans
is (d1, d2, d3, d4, d5, d6, d7) = (1, 1, 1, 1, 0, 0, 0). We first show that σ̂ exhibits infor-
mational inefficiency and then that σ̂ is an equilibrium.

Inefficiency. To see that σ̂ is inefficient, consider the relation between the signal
distribution and the voting outcome. Suppose that two experts have received signal
A∗ and one expert has received signal B∗. Assume that the four non-experts happen
to be linked to the two B-partisans, to the expert who received the signal B∗, and
to one of the experts who received signal A∗. In this case, σ̂ implies that B wins by
one vote. Since this is an instance in which the majority signal is not chosen by the
group, σ̂ is not efficient in the current network.

Equilibrium. We show that none of the agents has an incentive to deviate from σ̂.
Consider first any non-expert i ∈ N . He is pivotal if without his vote the outcome
of the election is a tie (5:5). This occurs either if there are two messages of each
kind and i has received the majority signal as the message; or if there are three
messages of the minority signal and one message of the majority signal and i has
received the minority signal as the message. Non-expert i’s belief that his message,
say A, is true, conditional on his pivotality, amounts to

pi(A|A, piv) =
3p2(1− p) 4

7 ∗
9
20 + 3p(1− p)2 3

7 ∗
4
20

3p2(1− p) 4
7 ∗

9
20 + 3p(1− p)2 3

7 ∗
4
20 + 3p(1− p)2 4

7 ∗
9
20 + 3p2(1− p) 3

7 ∗
4
20

and simplifies to

pi(A|A, piv) =
p2(1− p)3 + p(1− p)2

[p2(1− p) + p(1− p)2] (3 + 1)
>

1

2
.

Hence, non-expert i’s expected utility from following the message as prescribed by
σ̂ is larger than his utility from abstention or voting the opposite.

Now, consider an expert j with dj = 0. Assume w.l.o.g. that j has received
signal A∗. By deviating from σ̂j this expert only changes the outcome if A would
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win by one vote (it is not possible that A wins by two votes). The draws of nature
that lead to this outcome are all such that A∗ is the majority signal. If A∗ were the
minority signal and expert j with dj = 0 had received A∗, alternative B would get
at least six votes (because there are two B-partisans and two experts with signal
B∗ and at least two of them have a non-expert who listens to them) and always win
under σ̂. Thus, j can only affect the outcome if A∗ is the majority signal. Since the
probability that A is correct is then above 0.5, a deviation from σ̂j cannot increase
expert j’s expected utility.

Now, consider an expert j with dj = 1. A deviation only affects the outcome
if the signal that j has received wins under σ̂, but not when j deviates. W.l.o.g.
assume that expert j has received signal A∗. Since j can reduce the number of votes
for A by at most two and increase the number of votes for B by at most two (when
he communicates and votes the opposite), the outcomes #A : #B that expert j
can overturn are 7:4 and 6:5. We proceed by showing for each of these outcomes
that the probability that A is correct is above 0.5 such that there is no incentive to
deviate from σ̂, which implements A. The outcome 7:4 with j receiving A is reached
under σ̂ only if signals were 3:0 or 2:1 in favor of A. Since in these two cases the
probability that A is true is above 0.5, overruling outcome 7:4 decreases expected
utility. The outcome 6:5 can be based on two situations (as in the discussion of
non-experts above). First, it is possible that A∗ is the majority signal and there
were two messages A and two messages B. Second, it is possible that A∗ is the
minority signal and two A-partisans plus one expert (the one holding the minority
signal) have sent message A. Using the probabilities of these two events, we observe
that A is more likely to be true than B, given that j has received signal A∗ and the
outcome is 5:4, if and only if the following inequality holds:

3p2(1− p)2

3
∗ 9

20
+ 3p(1− p)2 1

3
∗ 4

20
≥ 3p(1− p)2 2

3
∗ 9

20
+ 3p2(1− p)1

3
∗ 4

20
.

The equation compares the probability that A is true when signals are 2:1 and 1:2
on the left-hand side with the probability that B is true when signals are 2:1 and
1:2 on the right-hand side, given that j has received signal A∗ and the outcome is
5:4. The inequality simplifies to

(
3p2(1− p)− 3p(1− p)2

) [2

3
∗ 9

20
− 1

3
∗ 4

20
,

]
≥ 0,

which is true (since p > 1
2
). Hence, any outcome that an expert with an audience can

overturn in this example is more likely to match the true state than the alternative.
Finally, partisans cannot improve by a deviation because, given the others’ strate-

gies under σ̂, they can only reduce the likelihood of their preferred outcome by a
deviation. Hence, σ̂ is an equilibrium despite its informational inefficiency.
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C.2 A Necessary and Sufficient Condition

Proposition C.4. In the specific model introduced in section 2, let m be odd and∑
j dj =: l be even. The sincere strategy profile σ̂ is an equilibrium if and only if the

following conditions hold.

1. If ∃i ∈ N with di = 0, then∑
x=1,3,...,m

(
p

m+x
2 (1− p)m−x

2 − (1− p)m+x
2 p

m−x
2

)
[ν(x, 1)− ν(−x, 1)] ≥ 0, where

ν(x, 1) denotes the number of “sub-multisets” of multiset {d1 + 1, ..., dm + 1}
which are of size m+x

2
and whose elements sum up to m+l+1

2
.4

2. ∀dj ∈ {d1, ..., dm} such that dj > 0 and for all ȳ ∈ {1, 2, dj, dj + 1, dj +
2, 2dj, 2dj + 1, 2dj + 2} the following holds:

(i) if ȳ even, then
∑

x=−m+2,−m+4,...,m

(
p

m+x
2 (1− p)m−x

2 − (1− p)m+x
2 p

m−x
2

)
·
∑

y=1,3,...,ȳ−1 ν(x, y|dj) ≥ 0, and

(ii) if ȳ odd, then
∑

x=−m+2,−m+4,...,m

(
p

m+x
2 (1− p)m−x

2 − (1− p)m+x
2 p

m−x
2

)
·
[∑

y=1,3,...,ȳ−2

(
ν(x, y|dj) + 1

2
ν(x, ȳ|dj)

)]
≥ 0,

where ν(x, y|dj) denotes the number of “sub-multisets” of multiset {d1+1, ..., dm+
1} which include element dj + 1, are of size m+x

2
, and whose elements sum up

to m+l+y
2

.

Proof. Part I shows necessity; part II shows sufficiency.

Part I. “ONLY IF”. Suppose σ̂ is an equilibrium. We show that the two condi-
tions of Prop. C.4 are satisfied.

1. Since σ̂ is an equilibrium, no player can beneficially deviate. In particular, if
there is a non-expert i ∈ N without a link, i.e., the qualification of the first
condition of Prop. C.4 holds, then for any deviation σ′i ∈ Σ′i = {A,B}, we have
EU(σ̂−i, σ̂i) ≥ EU(σ−i, σ

′
i). W.l.o.g. suppose that σ′i = B. Letting y denote

the outcome under σ̂ defined as the number of votes for A minus the number
of votes for B, we observe that the deviation reduces the outcome y by one
vote (because i votes for B instead of abstaining). The deviation σ′i thus only
affects the outcome if y = +1 and turns it into y′ = 0 (i.e., if A wins by one
vote under σ̂, while there is a tie under σ′ := (σ̂−i, σ

′
i)). Restricting attention

to these draws of nature, we must still have that the sincere strategy profile
leads to higher expected utility since it is an equilibrium by assumption:

EU|y=1(σ̂−i, σ̂i) ≥ EU|y=1(σ̂−i, σ
′
i) =

1

2
. (C.1)

The right-hand side (RHS) is 1
2

because this is the expected utility of a tie.
Some more notation is helpful. Let x denote a distribution of signals defined

4In a multiset the same numbers can occur several times. In full analogy to the notion of a
subset, we call a multiset that is contained in another multiset a “sub-multiset.”
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as the number of A∗-signals minus the number of B∗-signals received by all
experts. Let P (x|A) denote the likelihood that the signals are x when the true
state is A, and likewise for P (x|B). Let P̂ (x, y) designate the probability that
signals x lead to outcome y under σ̂. Then we can rewrite inequality C.1 as

1
2

∑
x=−m,−m+2,...,m P (x|A)P̂ (x, 1)

1
2

∑
x=−m,−m+2,...,m

(
P (x|A)P̂ (x, 1) + P (x|B)P̂ (x, 1)

) ≥ 1

2
, (C.2)

since the expected utility under σ̂ when restricting attention to the draws of
nature that lead to a win of A by one vote equals the probability that A is
true under these conditions.

This simplifies to∑
x=−m,−m+2,...,m

P (x|A)P̂ (x, 1) ≥
∑

x=−m,−m+2,...,m

P (x|B)P̂ (x, 1) (C.3)

and further to ∑
x=−m,−m+2,...,m

(P (x|A)− P (x|B)) P̂ (x, 1) ≥ 0. (C.4)

Now, we split the sum into positive and negative values of x and finally rejoin
them by using P (x|A) = P (−x|B):∑

x=−m,−m+2,...,m

(P (x|A)− P (x|B)) P̂ (x, 1) ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (x|B)) P̂ (x, 1)

+
∑

x=−m,−m+2,...,−1

(P (x|A)− P (x|B)) P̂ (x, 1) ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (x|B)) P̂ (x, 1)

+
∑

x=1,3,...,m

(P (−x|A)− P (−x|B)) P̂ (−x, 1) ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (x|B)) P̂ (x, 1)

+
∑

x=1,3,...,m

(P (x|B)− P (x|A)) P̂ (−x, 1) ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (x|B)) [P̂ (x, 1)− P̂ (−x, 1)] ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (−x|A)) [P̂ (x, 1)− P̂ (−x, 1)] ≥ 0.

Independent of the strategy profile, P (x|A) =
(

m
m+x

2

)
p

m+x
2 (1 − p)

m−x
2 . For a

draw of signals with difference x (in numbers of A∗-signals and B∗-signals),
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the outcome y = +1 is reached under σ̂ if there are exactly m+l+1
2

votes for A.
All of the A-votes under σ̂ can be partitioned such that each element of the
partition is referred to an expert j with signal A∗. Such an expert accounts for
dj+1 votes because there is her vote and the votes of her audience. Hence, the
probability that draw of nature x leads to outcome y = +1 is determined by
the frequency with which m+x

2
experts who have received signal A∗ account for

exactly m+l+1
2

votes. This frequency is given by the number of “sub-multisets”
of multiset {d1 + 1, ..., dm + 1} which have size m+x

2
and whose elements sum

up to m+l+1
2

.

Considering all possible allocations of m+x
2

A∗-signals among m experts, there
are

(
m

m+x
2

)
possibilities (which is the number of all “sub-multisets” of multiset

{d1 + 1, ..., dm + 1} of size m+x
2

). Therefore, the probability that signals x lead
to outcome y = +1 is

P̂ (x,+1) =
ν(x, 1)(

m
m+x

2

) ,
where ν(x, 1) denotes the number of “sub-multisets” of multiset {d1+1, ..., dm+
1} of size m+x

2
and sum m+l+1

2
.

Plugging the equations for P (x|A) and P̂ (x, 1) into the inequality derived
above yields:∑

x=1,3,...,m

((
m
m+x

2

)
p

m+x
2 (1− p)

m−x
2 −

(
m
m−x

2

)
(1− p)

m+x
2 p

m−x
2

)

·

[
ν(x, 1)(

m
m+x

2

) − ν(−x, 1)(
m

m−x
2

) ] ≥ 0.

(C.5)

Since
(

m
m−x

2

)
=
(

m
m+x

2

)
, these factors cancel out such that we get

∑
x=1,3,...,m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

)
[ν(x, 1)− ν(−x, 1)] ≥ 0. (C.6)

This shows that the first condition of Prop. C.4 is indeed implied by the
assumption that σ̂ is an equilibrium.

2. Let us turn to the second condition of Prop. C.4 by considering some expert
j ∈ M with dj > 0. W.l.o.g. let her signal be A∗. Under the sincere strategy
profile j will vote and communicate her signal, i.e., A. Abstention reduces
the outcome y by one vote, voting the opposite reduces the outcome y by
two votes. Sending no message reduces the outcome by dj votes. Sending
the opposite message reduces the outcome by 2dj votes. Therefore, there are
feasible deviations for j that reduce the outcome by a number of votes ȳ which
is in the following set {1, 2, dj, dj + 1, dj + 2, 2dj, 2dj + 1, 2dj + 2}.
By the assumption that σ̂ is an equilibrium, there is no beneficial devia-
tion for j. That is, for any deviation σ′j ∈ Σ′j, we have EU sj=A∗(σ̂−j, σ̂j) ≥
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EU sj=A∗(σ̂−j, σ
′
j). Considering some deviation σ′j and the corresponding reduc-

tion of the outcome by ȳ, the implemented alternatives only differ for draws of
nature such that y > 0 and y′ ≤ 0, i.e for outcomes y such that 0 < y ≤ ȳ (be-
cause only then the reduction of support for the received signal has any effect).
Therefore, the inequality of expected utility must also hold when focusing on
these cases, i.e.

EU
sj=A∗

|0<y≤ȳ(σ̂−j, σ̂j) ≥ EU
sj=A∗

|0<y≤ȳ(σ̂−j, σ
′
j). (C.7)

(i) Suppose first that ȳ is even. Then the deviation σ′j turns all outcomes
in which A wins and 0 < y ≤ ȳ − 1 into a win of alternative B (outcomes
y = ȳ are not possible because y is odd). Therefore, the expected utility of
strategy profile σ̂ (respectively, σ′ := (σ̂−j, σ

′
j)), focusing on these cases, is the

probability that A (respectively, B) is true in these cases. Let Psj=A∗(x|ω =
A) =: PA(x|A) denote the probability that the signal distribution is x and
that expert j has received signal A∗ when the true state is A, and similarly for
Psj=A∗(x|ω = B) =: PA(x|B). Moreover, let P̂sj=A∗(x, y) =: P̂A(x, y) be the
probability that the signals x lead to outcome y under σ̂, given that expert j
has received signal A∗. Note that P̂A(x, y) is not defined for x = −m because if
all experts have received signal B∗ it is not possible that expert j has received
signal A∗. Then we can rewrite inequality C.7 as∑

x=−m+2,−m+4,...,m

PA(x|A)
∑

y=1,3,...,ȳ−1

P̂A(x, y) ≥∑
x=−m+2,−m+4,...,m

PA(x|B)
∑

y=1,3,...,ȳ−1

P̂A(x, y).
(C.8)

inequality C.8 incorporates that the likelihood of A being true is greater or
equal than the likelihood of B being true given that the deviation is effective
and that expert j has received signal A∗.5 This inequality simplifies to∑

x=−m+2,−m+4,...,m

(PA(x|A)− PA(x|B))

·
∑

y=1,3,...,ȳ−1

P̂A(x, y) ≥ 0.
(C.9)

Independent of the strategy profile, PA(x|A) =
(

m
m+x

2

)
p

m+x
2 (1−p)m−x

2 ·
m+x

2

m
and

PA(x|B) =
(

m
m−x

2

)
p

m−x
2 (1 − p)m+x

2 ·
m+x

2

m
. The factor before the multiplication

sign is the probability that there are exactly m+x
2

A∗-signals. Given such a
distribution, the factor after the multiplication sign is the probability that
expert j has received signal A∗.

For a distribution of signals x, the outcome y is reached under σ̂ if there are
exactly m+l+y

2
votes for A. All of the A-votes under σ̂ can be partitioned

5To get the absolute probabilities of A (respectively B) being true, we can divide the LHS
(respectively the RHS) of inequality C.8 by the sum of the LHS and the RHS.
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such that each element is referred to an expert k with signal A∗. Such an
expert accounts for dk + 1 votes (because there is her vote and the votes of
her audience). By assumption, expert j has received signal A∗ and thus there
are at least dj + 1 votes for A under σ̂. The probability that draw of nature x
leads to outcome y is determined by the frequency that the m+x

2
experts who

have received signal A∗ account for exactly m+l+y
2

votes. Hence, this frequency
is given by the number of “sub-multisets” of multiset {d1 +1, ..., dm+1} which
include element dj + 1, are of size m+x

2
, and whose elements sum up to m+l+y

2
.

Considering all possible allocations of m+x
2

A∗-signals among m experts such

that j also receives signal A∗, there are
(

m−1
m+x

2
−1

)
possibilities (which is the

number of all “sub-multisets” of multiset {d1 + 1, ..., dm + 1} which include
element dj + 1 and are of size m+x

2
). Therefore, the probability that signals x

lead to outcome y, given that expert j has received signal A∗, is

P̂A(x, y) =
ν(x, y|dj)(

m−1
m+x

2
−1

) ,
where ν(x, y|dj) denotes the number of “sub-multisets” of multiset {d1 +
1, ..., dm + 1} which include element dj + 1, are of size m+x

2
, and whose el-

ements sum up to m+l+y
2

.

Hence, we can rewrite inequality C.9 as follows∑
x=−m+2,−m+4,...,m

(PA(x|A)− PA(x|B))
∑

y=1,3,...,ȳ−1

P̂A(x, y) ≥ 0

⇔
∑

x=−m+2,−m+4,...,m

(( m
m+x

2

)
p

m+x
2 (1− p)

m−x
2

m+x
2

m

−
(

m
m−x

2

)
(1− p)

m+x
2 p

m−x
2

m+x
2

m

) ∑
y=1,3,...,ȳ−1

ν(x, y|dj)( m−1
m+x

2 −1

) ≥ 0

⇔
∑

x=−m+2,−m+4,...,m

(
m

m+x
2

) m+x
2

m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

)
·

∑
y=1,3,...,ȳ−1

ν(x, y|dj)( m−1
m+x

2 −1

) ≥ 0.

We have used that
(

m
m+x

2

)
=
(

m
m−x

2

)
. Finally, we observe that the factors

(
m

m+x
2

)
,

m+x
2

m
, and 1

( m−1
m+x

2 −1)
simplify to one because

( m
m+x

2
)

( m−1
m+x

2 −1)
= m

m+x
2

such that we get

∑
x=−m+2,−m+4,...,m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

) ∑
y=1,3,...,ȳ−1

ν(x, y|dj) ≥ 0

(C.10)

We have shown that inequality C.10, which coincides with condition 2(i) of
Prop. C.4, holds for any ȳ ∈ {1, 2, dj, dj + 1, dj + 2, 2dj, 2dj + 1, 2dj + 2} even.

(ii) Suppose now that ȳ is odd. (Still, we keep the assumption that some
expert j ∈M with dj > 0 has received signal A∗ and considers a deviation σ′j
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that reduces the outcome by ȳ). Then the deviation σ′j turns all outcomes in
which A wins and 0 < y ≤ ȳ into a win of alternative B for y = 1, 3, ..., ȳ − 2
and into a tie for y = ȳ. Therefore,

EU
sj=A∗

|0<y≤ȳ(σ̂−j, σ
′
j) =∑

x=−m+2,−m+4,...,m(PA(x|B)(
∑

y=1,3,...,ȳ−2 PA(x,y)+ 1
2
P̂A(x,ȳ))+ 1

2
PA(x|A)P̂A(x,ȳ))∑

x=−m+2,−m+4,...,m(PA(x|A)+PA(x|B))
∑

y=1,3,...,ȳ P̂A(x,y)
.

The denominator is the probability that an outcome under σ̂ is reached such
that the deviation has some effect. The numerator consists of the probability
that B is true for the cases where the deviation leads to a win of alternative
B and of half the probabilities that A or B are true when the deviation leads
to a tie.

The expected utility of the sincere strategy profile amounts to

EU
sj=A∗

|0<y≤ȳ(σ̂−j, σ̂j) =
∑

x=−m+2,−m+4,...,m PA(x|A)(
∑

y=1,3,...,ȳ−2 P̂A(x,y)+P̂A(x,ȳ))∑
x=−m+2,−m+4,...,m(PA(x|A)+PA(x|B))

∑
y=1,3,...,ȳ P̂A(x,y)

.

The numerator is the probability that A is true under the cases where the
deviation has some effect. Since the denominator is the same as above, we can
rewrite inequality C.7 as∑

x=−m+2,−m+4,...,m

(
PA(x|A)

(∑
y=1,3,...,ȳ−2 P̂A(x, y) + P̂A(x, ȳ)

)
− PA(x|B)

·
(∑

y=1,3,...,ȳ−2 P̂A(x, y) + 1
2
P̂A(x, ȳ)

)
− 1

2
PA(x|A)P̂A(x, ȳ)

)
≥ 0 and further

simplify it to ∑
x=−m+2,−m+4,...,m

(PA(x|A)− PA(x|B))

·

( ∑
y=1,3,...,ȳ−2

P̂ (x, y|dj) +
1

2
P̂A(x, ȳ)

)
≥ 0.

(C.11)

Now, we plug in PA(x|A) =
(

m
m+x

2

)
p

m+x
2 (1−p)m−x

2

m+x
2

m
and PA(x|B) =

(
m

m−x
2

)
p

m−x
2 (1−

p)
m+x

2

m+x
2

m
; as well as P̂A(x, y) =

ν(x,y|dj)

( m−1
m+x

2 −1)
. This yields:

∑
x=−m+2,−m+4,...,m

(
m
m+x

2

) m+x
2

m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

)
·

( ∑
y=1,3,...,ȳ−2

ν(x, y|dj)(
m−1

m+x
2
−1

) +
1

2

ν(x, ȳ|dj)(
m−1

m+x
2
−1

) ) ≥ 0.

(C.12)

Again, the factors
(

m
m+x

2

)
,

m+x
2

m
, and 1

( m−1
m+x

2 −1)
cancel out since their product is

1. Hence, inequality C.12 becomes
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∑
x=−m+2,−m+4,...,m

(
p

m+x
2 (1− p)

m−x
2 − (1− p)

m+x
2 p

m−x
2

)
·

( ∑
y=1,3,...,ȳ−2

ν(x, y|dj) +
1

2
ν(x, ȳ|dj)

)
≥ 0.

(C.13)

Inequality C.13 holds for any ȳ ∈ {1, 2, dj, dj + 1, dj + 2, 2dj, 2dj + 1, 2dj + 2}
odd and coincides with condition 2(ii) of Prop. C.4.

We have derived the implications for an arbitrary expert with degree dj > 0
and for some arbitrary ȳ ∈ {1, 2, dj, dj + 1, dj + 2, 2dj, 2dj + 1, 2dj + 2}. The
derived conditions 2(i) and 2(ii) must hence hold for any dj ∈ {d1, ..., dm}
such that dj > 0. For the case of the empty network, in which no single expert
has an audience, the strategy profile σ̂ is not interesting to study because
communication is impossible, but formally still Prop. C.4 applies. In this
special case condition 2 is trivially satisfied. Thus, we have shown that if σ̂ is
an equilibrium, then the second condition of Prop. C.4 is also satisfied.

Part II. “IF”. Suppose that the two conditions of Prop. C.4 are satisfied. We
show that σ̂ is an equilibrium by deriving the implications of these two conditions
for every kind of player.

• Non-experts without a link: Consider any non-expert i ∈ N with di = 0. The
set of strategies is {A,B, φ} and σ̂i = φ. Suppose condition 1 of Prop. C.4
holds, which is inequality C.6. In part I of the proof we used a sequence of
transformations to rewrite inequality C.1 as inequality C.6. Since these were all
equivalence transformations, the assumption that inequality C.6 holds implies
that inequality C.1 holds. Thus, condition 1 of Prop. C.4 implies that for a
non-expert without a link deviating from σ̂ does not increase expected utility,
given that the outcome is y = +1, i.e., given that the deviation has any effect
on the outcome.

• Experts with an audience: Consider any expert j ∈ M with dj > 0. This
expert has (3× 3)2 = 81 strategies because she chooses one of three messages
and one of three voting actions after receiving one of two signals. To evaluate
different strategies we can assume w.l.o.g. that the expert has received signal
A∗ because neither the utility function nor the strategy profile depends on
the label of the alternatives. This reduces the number of strategies to nine.
Consider any deviation σ′j. This deviation reduces the voting outcome y that
is attained under σ̂ by a number ȳ ∈ {1, 2, dj, dj+1, dj+2, 2dj, 2dj+1, 2dj+2}.
For each of these numbers conditions 2(i) and 2(ii) of Prop. C.4 are equivalent
to inequality C.7 since the conditions 2(i) and 2(ii) were derived by equivalence
transformations of inequality C.7. Thus, for any deviation of an expert with an
audience, the expected utility is weakly smaller than under σ̂, when restricting
attention to the cases where the deviation has some effect on the outcome and
hence in general as well.

12



• Experts without an audience: Consider any expert j ∈ M with dj = 0.
W.l.o.g. assume that j has received signal A∗. Under σ̂ expert i would vote A.
Alternatively, she can vote B respectively abstain, which reduces the outcome
y by two respectively by one vote. (These deviations have already been con-
sidered for experts with an audience when letting ȳ = 2, respectively, ȳ = 1.)
These deviations are not increasing expected utility since condition 2(i) of
Prop. C.4 holds in particular for ȳ = 2 and condition 2(ii) of Prop. C.4 holds
in particular for ȳ = 1 such that inequality C.7 is satisfied.

• Non-experts with a link: Consider any non-expert i ∈ N with di = 1. W.l.o.g.
assume that i has received message A. Under σ̂ non-expert i votes A. Al-
ternatively, he can vote B respectively abstain, which reduces the outcome y
by two respectively by one vote. (The effect of these two deviations is as if
an expert with signal A∗ would vote for B respectively abstain.) Again, since
condition 2(i) of Prop. C.4 holds in particular for ȳ = 2 and condition 2(ii) of
Prop. C.4 holds in particular for ȳ = 1, inequality C.7 is satisfied such that
these deviations do not increase expected utility.

We have shown in part II of the proof that the conditions 1 and 2 provided in
Prop. C.4 imply that no player can beneficially deviate from σ̂.

C.3 Equilibrium Analysis of Examples 1, 2, and 3

We define the concept of a transmission network g∗ ⊆ g as follows: A link g∗ij between
non-expert i ∈ N and expert j ∈ M exists if and only if j truthfully transmits her
signal to i. Truthful transmission requires that (1) the expert sends a message
m∗j ∈ {A,B, ∅} whenever her signal is A∗ and sends a different message m∗

′
j ∈

{A,B, ∅} ,m∗′j 6= m∗j whenever her signal is B∗; and that (2) the posterior belief of
the non-expert, conditional on the message received, equals the posterior belief of
the expert, conditional on her signal. In equilibrium, (1) implies (2). A transmission
network g∗ arises in the communication stage on the equilibrium path. Note that
different communication strategies support a given g∗, e.g., sending message A after
signal A∗ and message B after signal B∗ transmits the same information as sending
messageB after signalA∗ and messageA after signalB∗. Since we are only interested
in the information transmission (and voting behavior) in equilibrium and not in the
precise “language” that transmits the information, we will not fully specify the
communication strategies but refer to the resulting transmission network instead.
Hence, we can drop any explicit reference to the full strategy profiles σ. Let v denote
the strategy profile of all players on the voting stage. Then, any type of equilibrium
of our examples 1,2, and 3 can be fully characterized by g∗ and v. Note that any
two equilibria that are characterized by a given g∗ and v are identical with respect
to all equilibrium beliefs, voting strategies and outcomes.6

6We do not explicitly specify off-equilibrium beliefs; hence the equilibria of one type may differ
in those. However, equating the off-equilibrium belief with the priors for any non-expert who,
surprisingly, finds himself uninformed after an expert’s deviation from g∗ on the communication
stage supports all selected equilibria.
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Let m̃i (sj) ∈ {A,B, ∅} denote the meaning that non-expert i ascribes to message
m∗j if g∗ij = 1 for some expert j who received signal sj ∈ {A∗, B∗}: i believes that
the expert’s vote recommendation is m̃i, with m̃i = A indicating a recommendation
to vote for A, m̃i = B indicating a recommendation to vote for B, and m̃i =
∅ indicating a recommendation to abstain. Slightly abusing notation, we write
vi (m̃i) ∈ {A,B, ∅} to denote the voting strategy of non-expert i with g∗ij = 1 for
some j. Analogously, the voting strategy of a non-expert i with g∗ij = 0 for all j ∈M
is denoted by vi (∅) ∈ {A,B, ∅}. Note that m̃i = ∅ implies g∗ij = 0 and gij = 1 in the
three examples. Let s̃l denote either signal sl ∈ {A∗, B∗} received by l ∈ M or the
meaning m̃l of the message received by l ∈ N . Then, we write vl (s̃l) ∈ {A,B, ∅} to
denote the voting strategy of l ∈M ∪N .

We now define the following four selection criteria that guide our equilibrium
analysis:

1. Purity: The equilibrium is in pure strategies.

2. Symmetry: Any two experts, as well as any two non-experts, with the same
degree in the transmission network apply identical strategies.

3. Monotonicity: If vi
(
m̃i
′) = m̃i for some m̃i

′ ∈ {A,B, ∅}, then vi (m̃i) = m̃i;
and if m̃i

(
s′j
)

= sj for some s′j ∈ {A,B}, then m̃i (sj) = sj.

4. Neutrality: (i) Unbiased voting: Either vl (s̃l) = s̃l for all s̃l ∈ {A,B} or
vl (s̃l) 6= s̃l for all s̃l ∈ {A,B}; and vi (∅) = ∅. (ii) Unbiased information
transmission: Either m̃i (sj) = sj for all sj ∈ {A,B}, or m̃i (sj) = ∅ (i.e.,
g∗ij = 0) for all sj ∈ {A,B}.

We now define a voting strategy profile v for any transmission network g∗ as
follows: Order the experts according to their degrees d∗j in g∗ in decreasing order,
indicate the experts with the highest degree in the transmission network by the
index δ∗1 and the experts with the second-highest degree with the index δ∗2, etc.
Indicate the lowest degree of experts by index δ∗M and the lowest possible degree of
non-experts by index δ∗N = 0.7 Order the non-experts according to their degrees d∗i
in decreasing order, indicate the non-experts with degree one in the transmission
network by the index 1 and the non-experts with degree zero with the index 0. Then,
a strategy profile on the voting stage is given by

v =

{
vδ1 (A) , vδ1 (B) ; vδ2 (A) , vδ2 (B) ; ..., vδM (A) , vδM (B) ;

v1 (A) , v1 (B) ; v0 (A) , v0 (B) , v0 (∅)

}
.

Note that a deviation of some expert j from g∗ on the communication stage is
either a lie that cannot be identified as such (i.e. v0(A) = v1(A) and v0(B) = v1(B))
or an empty message. Hence, in what follows we can drop v0(A) and v0(B) as
elements of the strategy profiles.

7The lowest degree of non-experts is zero off equilibrium, even though it might be one on the
equilibrium path.
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C.3.1 Example 1

In Example 1, we have two possibilities. Either the transmission network is empty
due to a babbling equilibrium. Then, the strategy profiles conforming to our se-
lection criteria imply that either all experts abstain or all experts vote their signal
while all non-experts abstain. The latter strategy profile is a “let the experts decide
(LTED)” equilibrium. This is an equilibrium in every game and we do not discuss
it further in this analysis. The second possibility is that r ∈ {1, 2, 3, 4} experts
transmit their signal to the non-expert linked to them, while the remaining experts
do not. (Note that we fully characterize g∗ by r in this example.) Hence, there
are two possible types of experts and two types of non-experts: those with degree
d∗l = 1 and those with d∗l = 0. Hence, the strategy profiles on the voting stage are
of the form

v = {v1 (A) , v1 (B) ; v2 (A) , v2 (B) ; v1 (A) , v1 (B) ; v0 (∅)} .

The strategy profiles on the voting stage that conform to our selection criteria Purity,
Symmetry, Monotonicity, and Neutrality are as follows:

v1 = {A,B;A,B;A,B; ∅} ,
v2 = {A,B;A,B; ∅, ∅; ∅} ,
v3 = {A,B; ∅, ∅;A,B; ∅} ,
v4 = {A,B; ∅, ∅; ∅, ∅; ∅} ,
v5 = {∅, ∅;A,B;A,B; ∅} ,
v6 = {∅, ∅;A,B; ∅, ∅; ∅} ,
v7 = {∅, ∅; ∅, ∅;A,B; ∅} , and
v8 = {∅, ∅; ∅, ∅; ∅, ∅; ∅} .
Checking deviation incentives for all types of players and all strategy profiles on

both the communication and the voting stage reveals the following result that we
state without proof.8

Proposition C.5. Strategy profile v1 and r ∈ {3, 4} are (sincere) equilibria; v2 and
r ∈ {1, 2, 3, 4} are (LTED) equilibria; v3 and r ∈ {1, 3} are equilibria (with sincere
voting and expert abstention); v4 and r ∈ {1, 3} are (“let some experts decide”)
equilibria; v5 and r ∈ {1, 2, 3, 4} are (delegation) equilibria and outcome-equivalent
to σ∗; v6 and r ∈ {2, 4} are (“let some experts decide”) equilibria; v7 and r ∈ {1, 3}
are (delegation) equilibria.

The equilibria characterized in the above proposition are also depicted in Fig-
ure 11.

C.3.2 Example 2

Again, we have two possibilities. Either the transmission network is empty due to a
babbling equilibrium and a LTED equilibrium exists. The second possibility is that

8The proof of this and all other propositions in this subsection can be obtained by the authors
upon request.
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Figure 11: All equilibria of Proposition C.5.
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Figure 12: All equilibria of Proposition C.6.

the center of the star (expert 1) transmits her signal to all non-experts. We now
consider this second possibility and refer to the resulting transmission network as
g∗2. The strategy profiles on the voting stage that conform to our selection criteria
Purity, Symmetry, Monotonicity, and Neutrality are as follows:

v1 = {A,B;A,B;A,B; ∅} ,
v2 = {A,B;A,B; ∅, ∅; ∅} ,
v3 = {A,B; ∅, ∅;A,B; ∅} ,
v4 = {A,B; ∅, ∅; ∅, ∅; ∅} ,
v5 = {∅, ∅;A,B;A,B; ∅} ,
v6 = {∅, ∅;A,B; ∅, ∅; ∅} ,
v7 = {∅, ∅; ∅, ∅;A,B; ∅} , and
v8 = {∅, ∅; ∅, ∅; ∅, ∅; ∅} .

Checking deviation incentives for all types of players and all strategy profiles on
both the communication and the voting stage reveals the following result.

Proposition C.6. Strategy profile v2 and g∗2 are (LTED) equilibria; v3 and g∗2 are
equilibria (with sincere voting and expert abstention); v4 and g∗2 are (“let some ex-
perts decide”) equilibria; v7 and g∗2 are (delegation) equilibria.

The equilibria characterized in the above proposition are also depicted in Fig-
ure 12.

C.3.3 Example 3

In this example we have three possibilities which reduce to two if we ignore the
empty transmission network whose only equilibrium LTED has been discussed above.
These two possibilities are the following: (1) Either gij = g∗ij for all i, j ∈ N ∪M ;
then, the two experts with degree two in g are symmetric, the four non-experts are
symmetric, and the three experts with degree zero in g are symmetric. (2) Or degree
dj = d∗j = 2 for exactly one expert j and d∗j′ = 0 for the other expert j′ who has
degree dj′ = 1 in g. Then, this other expert j′ is symmetric to the experts with
degree zero in g; the two non-experts i with g∗ij = 1 are symmetric, and the two
non-experts with g∗ij = 0 are symmetric.
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Possibility (1). Let us first consider the case in which the transmission net-
work equals the exogenous network; and let g∗31 denote this network. Then, the
profiles on the voting stage that conform to our selection criteria Purity, Symmetry,
Monotonicity, and Neutrality are as follows:

v1 = {A,B;A,B;A,B; ∅} ,
v2 = {A,B;A,B; ∅, ∅; ∅} ,
v3 = {A,B; ∅, ∅;A,B; ∅} ,
v4 = {A,B; ∅, ∅; ∅, ∅; ∅} ,
v5 = {∅, ∅;A,B;A,B; ∅} ,
v6 = {∅, ∅;A,B; ∅, ∅; ∅} ,
v7 = {∅, ∅; ∅, ∅;A,B; ∅} , and
v8 = {∅, ∅; ∅, ∅; ∅, ∅; ∅} .

Checking deviation incentives for all types of players and all strategy profiles on
both the communication and the voting stage reveals the following result.

Proposition C.7. Strategy profile v1 and g∗31 are (sincere) equilibria; v2 and g∗31 are
(LTED) equilibria; v5 and g∗31 are (delegation) equilibria; v6 and g∗31 are (“let some
experts decide”) equilibria.

The equilibria characterized in the above proposition are also depicted in Fig-
ure 13 below.

Possibility (2). Let us now consider the case in which the transmission network
differs from the exogenous network in that only one expert transmits his signal, and
let us refer to this transmission network as g∗32. Then, the profiles on the voting
stage that conform to our selection criteria Purity, Symmetry, Monotonicity, and
Neutrality are as follows:

v1 = {A,B;A,B;A,B; ∅} ,
v2 = {A,B;A,B; ∅, ∅; ∅} ,
v3 = {A,B; ∅, ∅;A,B; ∅} ,
v4 = {A,B; ∅, ∅; ∅, ∅; ∅} ,
v5 = {∅, ∅;A,B;A,B; ∅} ,
v6 = {∅, ∅;A,B; ∅, ∅; ∅} ,
v7 = {∅, ∅; ∅, ∅;A,B; ∅} , and
v8 = {∅, ∅; ∅, ∅; ∅, ∅; ∅} .

Checking deviation incentives for all types of players and all strategy profiles on
both the communication and the voting stage reveals the following result that we
state without proof.

Proposition C.8. Strategy profile v2 and g∗32 are (LTED) equilibria; v3 and g∗32 are
equilibria (sincere voting with some experts abstaining); v4 and g∗32 are (“let some
experts decide”) equilibria; v7 and g∗32 are (delegation) equilibria.

The equilibria characterized in the above proposition are also depicted in Fig-
ure 13.
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Figure 13: All equilibria of Propositions C.7 and C.8 .

C.4 Equivalence of Definitions 2.2 and 5.1

Definitions 2.2 and 5.1 both define the notions of strong and weak balancedness. We
show here that Definition 5.1 of the general model introduced in section 5 applied
to the specific model introduced in section 2 is indeed equivalent to Definition 2.2
and moreover that strong balancedness implies weak balancedness.

Formally, we consider the general model introduced in section 2 and make the
assumption that the set of voters V can be partitioned into a set of experts M who
receive an informative signal of the homogenous quality pj = p > 0.5 and a set
of non-experts N who receive a non-informative signal of precision pi = 0.5. The
network structure g is bipartite such that there are only links between experts and
non-experts. Moreover, audiences are non-overlapping, i.e. each non-expert is linked
to at most one expert.

Notice that the neighborhood of an expert Vj consists of her audience of linked
non-experts (if any). The neighborhood of an non-expert Vi consists of the linked
expert (if any). Therefore, an expert j ∈ M is a believer of a set S ⊆ V , i.e.
j ∈ V +(S), if and only if j ∈ S; and a non-expert i ∈ N is a believer of a set S ⊆ V ,
i.e. i ∈ V +(S), if and only if j ∈ S for the linked expert j (with ij in g). Thus, for
any set S ⊆ V , the set of believers V +(S) consists of the experts who are in S and
of their audiences of non-experts. Hence

|V +(S)| = |M ∩ S|+
∑

j∈(M∩S)

dj. (C.14)
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Notice also that the expertise of a set of voters S ⊆ V is proportional to the
number of experts in the set since

∑
j∈S log(

pj
1−pj ) = |S ∩M | ∗ log( p

1−p). Thus, a set

of voters S ⊆ V is better informed than the complementary set V \ S if and only if
S contains a majority of experts. Formally,∑

j∈S

log(
pj

1− pj
) >

∑
k∈V \S

log(
pk

1− pk
) if and only if |M ∩ S| > |M \ S|, (C.15)

or equivalently∏
j∈S

pj
1− pj

>
∏

k∈V \S

pk
1− pk

if and only if |M ∩ S| > m

2
. (C.16)

Strong balancedness. Strong balancedness according to Definition 5.1 (a) is sat-
isfied if and only if ∀S ⊆ V ,∏

j∈S

pj
1− pj

>
∏

k∈V \S

pk
1− pk

implies |V +(S)| > |V −(S)|.

Since in the specific model pj = p for all j ∈M and pi = 0.5 for all i ∈ N , and since
|V +(S)| = |M ∩ S|+

∑
j∈(M∩S) dj, this is equivalent to ∀S ⊆ V ,

|S ∩M | > m

2
implies |M ∩ S|+

∑
j∈(M∩S)

dj > |M \ S|+
∑

k∈(M\S)

dk.

Since in a set S the non-experts S ∩N do not matter for the above equations, the
statement above is equivalent to ∀M ′′ ⊆M ,

m′′ >
m

2
implies m′′ +

∑
j∈M ′′

dj > m−m′′ +
∑

k∈(M\M ′′)

dk. (C.17)

If equation C.17 holds for a given set M ′′, then it also holds for a superset of
it. Hence, for m odd, the condition above (which makes a requirement on all sets
M ′′ ⊆M with m′′ > m

2
) is equivalent to ∀M ′′ ⊆M such that m′′ = m+1

2
,

m+ 1

2
+
∑
j∈M ′′

dj >
m− 1

2
+

∑
k∈(M\M ′′)

dk,

which simplifies to

1 +
∑
j∈M ′′

dj >
∑

k∈(M\M ′′)

dk

and finally to ∑
j∈M ′′

dj ≥
∑

k∈(M\M ′′)

dk,

which is the definition of strong balancedness according to Definition 2.2.
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Weak balancedness. Definition 5.1 part (b) uses the following two notions. For
a voter i ∈ V , Si collects all sets of voters S, of which i is a believer, i.e. i ∈ V +(S),
and which have slightly more believers than non-believers, i.e. |V +(S)| − |V −(S)| ∈
{0, 1, 2}. Qi collects all subsets of these sets that belong to i’s neighborhood, i.e.
Qi := {Q ⊆ V |Q = (Vi ∪ i) ∩ S for some S ∈ Si}.

Under the specific assumptions (that nest the model of section 2 in the framework
of section 5), these notions simplify as follows. For an expert j ∈M , Sj collects all
sets of voters S, that include expert j, i.e. j ∈ S, and whose experts together with
their audiences have slightly more voters than the complementary set, i.e.

|M ∩ S|+
∑

k∈(M∩S)

dk − (|M \ S|+
∑

l∈(M\S)

dl) ∈ {0, 1, 2},

which is equivalent to∑
k∈(M∩S)

(dk + 1)−
∑

l∈(M\S)

(dl + 1) ∈ {0, 1, 2}. (C.18)

Moreover, for an expert j ∈M , Qj collects all subsets Q of these sets S that belong
to i’s neighborhood, which consists of the expert j herself and a (possibly emtpy)
subset of her audience of linked non-experts, i.e. j ∈ Q ⊆ {Vi ∪ j}. Hence, either
Sj = ∅, then Qj = ∅; or Sj 6= ∅, then {{j}} ∈ Qj.

For a non-expert i ∈ N , Si = ∅ if di = 0 because i /∈ V +(S) for any set S. If non-
expert i is linked to some expert j, then Si = Sj, i.e. the set Si coincides with the
corresponding set of the expert linked to non-expert i. Moreover, for a non-expert
i ∈ N , Qi collects all subsets of these sets that belong to i’s neighborhood, which
consists only of the expert j who is linked to i, i.e. Q = {{j}}. Hence, either Si = ∅
(e.g. because di = 0), then Qi = ∅; or Si 6= ∅, then Qi = {{j}} with ij ∈ g.

On the other hand, Definition 2.2 part (b) uses the following notion. For an
expert j ∈M ,Mj is the set of expert sets M ′′ ⊆M that contain expert j and form
a slight majority when adding their audiences of non-experts, i.e.∑

k∈M ′′
(dk + 1)−

∑
l∈M\M ′′

(dl + 1) ∈ {0, 1, 2}. (C.19)

Hence, there is a strong relation between the sets Sj andMj. To every set S ∈ Sj
there corresponds one set M ′′ ∈ Mj simply by M ′′ = S ∩M , and equation C.18
above holds for the set S if and only if equation C.19 holds for the set M ′′ = S ∩M .

Now, suppose a network is weakly balanced according to Definition 5.1. We
show weak balancedness according to Definition 2.2, which requires that for every
expert j ∈ M , Mj 6= ∅ implies that there is at least one element consisting of a
weak majority of experts, i.e. ∃M ′′ ∈ Mj such that m′′ ≥ m+1

2
. If for some expert

j ∈ M , Mj = ∅, then the condition cannot be violated for this particular expert.
Consider any expert j ∈ M with Mj 6= ∅. Then Sj 6= ∅, because M ′ ∈ Mj implies
M ′ ∈ Sj and {{j}} ∈ Qj 6= ∅. By weak balancedness according to Definition 5.1,
∃S ∈ Sj with |M ∩ S| > m

2
. We construct M ′′ := S ∩M , which satisfies M ′′ ∈ Mj

and m′′ ≥ m+1
2

.
Now, suppose a network is weakly balanced according to Definition 2.2. We show

weak balancedness according to Definition 5.1, which requires that for every voter
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i ∈ V and for everyQ ∈ Qi, there is a corresponding set of agents S withQ ⊆ S ∈ Si,
which is better informed than the complementary set, i.e.

∏
j∈S

pj
1−pj ≥

∏
k∈V \S

pk
1−pk

.

For voters i ∈ V with Qi = ∅, the condition cannot be violated for this particular
voter i. Now, consider any expert j ∈ M with Qj 6= ∅ and hence Si 6= ∅. Then
Mj 6= ∅, because S ∈ Sj implies (S ∩M) ∈ Mj. By weak balancedness according
to Definition 2.2, ∃M ′′ ∈ Mj with m′′ ≥ m+1

2
. M ′′ ∈ Mj means that j ∈ M ′′ and

that M ′′ satisfies equation C.19 and thus also equation C.18 for S = M ′′. Hence,
|V +(M ′′)| − |V −(M ′′)| ∈ {0, 1, 2} such that M ′′ ∈ Sj. Moreover, m′′ ≥ m+1

2
implies

that
∏

j∈V ∩M ′′
pj

1−pj ≥
∏

k∈V \M ′′
pk

1−pk
(because all experts j ∈ M have equal signal

precision pj). This holds for any Q ∈ Qi because all Q ∈ Qi satisfy Q ∩M ′′ = {j}
and non-experts do not affect the equations. Now, consider any non-expert i ∈ N
with Qi 6= ∅. Then Qi = {{j}} ⊆ Qj. Since for expert j linked to i there is a
set S = M ′′ ∈ Sj with S ⊇ {j} with

∏
j∈S

pj
1−pj ≥

∏
k∈V \S

pk
1−pk

, this also holds for
non-expert i.

Strong balancedness implies weak balancedness. We show that a violation
of weak balancedness implies a violation of strong balancedness.

Suppose weak balancedness is violated, i.e. there is a voter i ∈ V and a set
Q ∈ Qi, such that there is no corresponding set of agents S with Q ⊆ S ∈ Si, which
is better informed than the complementary set, i.e. which is not fulfilling

∏
j∈S

pj
1−pj ≥∏

k∈V \S
pk

1−pk
. Hence, ∀S ∈ Si, we have

∏
j∈S

pj
1−pj <

∏
k∈V \S

pk
1−pk

. (Si 6= ∅ because

Qi 6= ∅ by assumption.) Then by strong balancedness, |V +(V \ S)| > |V −(V \ S)|,
which implies |V +(S)| < |V −(S)|. However, this contradicts S ∈ Si, which requires
that |V +(S)| − |V −(S)| ∈ {0, 1, 2}.

C.5 Simple Games: A Justification of Power

Proposition 5.2 can be interpreted in terms of expert power as defined in the class of
simple games (cf., e.g., Roth, 1988). To see this, note that our model defines a non-
cooperative game under incomplete information which is specified by an exogenous
network g and by signal precisions pj. To each of these games Γ(g, p1, ..., pn) we will
associate two cooperative games of the form (V, υ), with the characteristic function
υ : 2V → {0, 1}. In the first game (V, υ∗) a coalition S is winning, i.e., υ∗(S) = 1, if
and only if it has a larger expertise than the complementary set as quantified by the
log-odds rule, i.e.

∑
j∈S log(

pj
1−pj ) >

∑
k∈V \S log( pk

1−pk
). (This is a so-called weighted

majority game in which each voter j’s weight is log(
pj

1−pj ).) In the second game

(V, υ̂) a coalition S is winning, i.e., υ̂(S) = 1, if and only if there are more believers
than non-believers, i.e. |V +(S)| > |V −(S)|. This is a simple game which mimics the
outcome of the sincere strategy profile in the game Γ(g, p1, ..., pn). Indeed, if a set
of voters S has received signal A∗ and all others B∗, then under σ̂ all |V +(S)| will
vote for A, all |V −(S)| will vote for B, and all |V 0(S)| will abstain.

In simple games, a player’s power is measured by the Shapley value, which is
then called the Shapley-Shubik index, or alternatively, with the Banzhaf index.
Both indices take into account how often a player can “swing” a losing coalition
into a winning coalition. In the simple game (V, υ̂) corresponding to Example 1,
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for instance, all five experts are equally powerful since the winning coalitions are
those which have at least three expert members. This is also true in the other game
(V, υ∗) that corresponds to Example 1 because all experts are equally well informed.
As a consequence, sincere voting is efficient in this example. The upcoming corol-
lary of Proposition 2.2 shows that this relation between power and efficiency fully
generalizes.

Definition C.1 (Power). For a weighted majority game (V, υ), define power of a
player i ∈ V as her Banzhaf index βi(υ) or her Shapley-Shubik index φi(υ). The
(raw) Banzhaf index of a player i ∈ V is the fraction of swings she has, i.e., βi(υ) =

1
2n−1

∑
S⊆V \{i}[υ(S ∪ {i}) − υ(S)]; the Shapley-Shubik index of a player i ∈ V is

her marginal contribution averaged over all orderings of the players, which can be
written as φi(υ) =

∑
S⊆V \{i}

|S|!(|V |−|S|−1)!
|V |! [υ(S ∪ {i})− υ(S)].

In the game (V, υ∗) power only depends on the signal qualities. There pi > pj
implies that voter i is at least as powerful as expert j. In the game (M, υ̂), power is
also monotonic in an agent’s expertise pi, in the sense that increasing a player’s signal
precision pi cannot reduce her power. Similarly, in that game power is monotonic
in a player’s degree di in the sense that adding a new link ij to g cannot decrease
the power of the agents i and j. However, a player’s power in (M, υ̂) is not a simple
function of her degree and her expertise, but depends on the network structure g as
well as on the signal precisions. For every given example, it can be computed.

Proposition C.9. Suppose there is no coalition S ⊂ V with
∑

j∈S log(
pj

1−pj ) =∑
k∈V \S log( pk

1−pk
).9 If the network g is strongly balanced, then each player’s power

is the same in the two corresponding games, i.e. ∀j ∈ V, φj(υ̂) = φj(υ
∗), as well as

βj(υ̂) = βj(υ
∗). For the special case of homogenous signal quality among all experts,

i.e. pj = p ∀j ∈ V with pj > 0.5, strong balancedness means that each expert is
equally powerful in (V, υ̂) and that all non-experts (with pi = 0.5) have no power.

Proof. Recall that strong balancedness is defined as follows: ∀S ⊆ V ,
∏

j∈S
pj

1−pj >∏
k∈V \S

pk
1−pk

implies |V +(S)| > |V −(S)|. By the definition of the games (V, υ∗) and

(V, υ̂), strong balancedness is equivalent to the following: ∀S ⊆ V , υ∗(S) = 1 implies
υ̂(S) = 1. Now, consider a set S such that υ∗(S) = 0. By definition of υ∗, we have
either

∑
j∈S log(

pj
1−pj ) <

∑
k∈V \S log( pk

1−pk
) or

∑
j∈S log(

pj
1−pj ) =

∑
k∈V \S log( pk

1−pk
).

The latter case is excluded by assumption. Hence, υ∗(S) = 0 implies υ∗(V \S) = 1,
which further implies by strong balancedness that υ̂(V \S) = 1, which finally implies
that υ̂(S) = 0. This shows for any set S that υ̂(S) = 1 if and only if υ∗(S) = 1, which
means that υ̂ = υ∗. As a consequence, the vectors of power coincide: φ(υ̂) = φ(υ∗),
as well as β(υ̂) = β(υ∗).

We now turn to the special case of homogenous signal quality. Let M ⊆ V denote
the set of voters with an informative signal, which we call experts, i.e. ∀j ∈ M , we
have pj = p > 0.5. Since v̂ = v∗, it is sufficient to show that all experts j ∈ M are

9This assumption only rules out non-generic cases, in which after the realization of all signals
still both alternatives are equally likely. In terms of simple games, the assumption means that the
simple game (V, υ∗) is strong, i.e. for all coalitions S ⊂ V , υ∗(S) = 0 implies that υ∗(V \ S) = 1.
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equally powerful in (V, υ∗) and that all non-experts i ∈ V \M (with pi = 0.5) have
power φ(υ∗) = 0, respectively, φ(υ∗) = β(υ∗) = 0, in that game (V, υ∗).

A non-expert i ∈ V \M contributes log( 0.5
1−0.5

) = 0 to each coalition S such that
he is a so-called dummy player: ∀S ⊆ V \ {i} we have υ(S ∪ {i}) = υ(S). By
definition of the Shapley-Shubik index and the Banzhaf index, non-expert i’s power
is thus zero: βi(υ) = 0, respectively φi(υ

∗) = 0.
All experts j ∈M contribute log( p

1−p) > 0 to each coalition S such that they are

symmetric in the game (V, υ∗).10 Consequently, all experts are equally powerful.

The proposition gives an interpretation to Proposition 2.2 by showing that strong
balancedness means that there are the same winning coalitions in the two corre-
sponding games. When signal precisions are homogeneous, all experts are equally
powerful in (V, υ∗) such that it is intuitive that equal power of experts in (V, υ̂)
means efficiency of σ̂. This can be illustrated with Example 1, in which each expert
is indeed equally powerful in the game (V, υ̂) since the winning coalitions are those
which have at least three members.

To illustrate a violation of strong balancedness, we consider an extreme case,
in which there is a dictator, i.e., a player j who has a swing in every coalition
S ⊆ V \ {j}. A dictator has the maximal Banzhaf index and the maximal Shapley-
Shubik index of one. Any player following the dictator’s message is “cursed” in the
sense that if the own vote is decisive under σ̂, then the opposite of the message
is more likely to be correct. An example illustrating this effect is given by the
weighted majority game (V, υ̂) corresponding to Example 2, the star network, in
which expert 1 has dictatorial power.11

C.6 Complete Proof of Proposition 5.3

Proof of Proposition 5.3

We show existence of inefficient strategy profiles with the network introduced in
Example 3 and extensions of it. For any t = 1, 2, ... we consider a network with two
experts of degree 2t, 1 + 2t experts of degree zero and 4t non-experts of degree one.
For t = 1 this is exactly the network depicted in Figure 2. All experts have signal
quality pj = p > 0.5, all non-experts signal quality pi = 0.5. For any t = 1, 2, ...,
denote the corresponding game by Γt and the sincere strategy profile in that game
by σ̂t.

Under σ̂t, 3 + 6t agents participate in the vote and a majority is reached with at
least 2 + 3t votes. If the two senders receive the same signal, say A∗, then A is the
outcome since the two senders induce 2 ∗ (1 + 2t) ≥ 2 + 3t A-votes. If both senders
receive different signals, A∗ and B∗, then A wins if and only if A receives k ≥ 1 + t
votes of the 1 + 2t experts with degree zero. Supposing that A is the true state, the

10A pair of players i, j ∈ V is called symmetric if ∀S ⊆M \{i, j} we have υ(S∪{i}) = υ(S∪{j}).
If two players i and j are symmetric, then they always have the same Banzhaf index βi(υ) = βj(υ),
respectively the same Shapley-Shubik index φi(υ) = φj(υ), by definition of the two indices.

11The simple games corresponding to Examples 1 and 2 are extreme cases with minimal, respec-
tively maximal, inequality of expert power.
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probability that the outcome is A provides the general probability that the outcome
coincides with the true state since σ̂t treats A and B interchangeably. Thus, under
σ̂t the probability that the outcome coincides with the true state is

EU(σ̂t) = p2 ∗ 1 + 2p(1− p)
2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k + (1− p)2 ∗ 0. (B.6)

Inefficiency. We establish inefficiency of σ̂t for any t and also in the limit. (Recall
that a strategy profile is efficient if and only if for any draw of nature it selects the
outcome that maximizes the probability to match the true state.) Consider the draw
of nature in which both senders receive signal A∗ and all other experts receive signal
B∗. An efficient strategy profile would implement (the majority signal) B, but σ̂t

leads to A.
For an efficient strategy profile σt the probability that the outcome coincides

with the true state is below one for finite t, but converges to one for growing t,
i.e. limt→∞EU(σt) = 1 when σt efficient. Under σ̂t, when both senders happen to
receive the incorrect signal, then the outcome does not coincide with the true state.
Thus, the probability of implementing the incorrect outcome under σ̂t is at least
(1 − p)2, which is independent of t. Hence, limt→∞EU(σ̂t) ≤ 1 − (1 − p)2 < 1, i.e.
inefficiency does not vanish for growing t.

Now, we establish that σ̂t is an equilibrium for any t. We show first that there
is no profitable deviation that occurs on the voting stage only. Then we show that
there is no profitable deviation that affects both stages voting and communication.

Deviations on the voting stage only. Consider a voter i ∈ V who considers to
deviate from σ̂t by changing his voting strategy vi. This can be a non-expert who
does not follow the received message or an expert who does not vote the received
signal, but chooses some different strategy instead.

Suppose one sender (i.e. a voter with pj = p > 0.5 and dj = 2t) receives signal
A∗ and the other sender receives signal B∗. Then A receives more votes than B
under σ̂t if and only if more experts with degree zero (i.e. voters with pj = p > 0.5
and dj = 0) have received signal A∗. Hence, when the two senders have not received
the same signal, then σ̂t always implements the majority signal and hence induces
the outcome that is more likely to be true. Hence, if there is a beneficial deviation,
then it must also change outcomes in which both senders have received the same
signal.

Suppose that both senders have received the same signal, say A∗. Then the
number of A-votes under σ̂t is at least 2 + 4t (since two senders, and 2 ∗ 2t non-
experts vote for A) and the number of B-votes is hence at most 3 + 6t− (2 + 4t) =
1 + 2t. The number of A-votes thus exceeds the number of B-votes by at least
2 + 4t − (1 + 2t) = 1 + 2t ≥ 3 votes. Hence, a single agent who changes her vote
cannot affect the outcome if the two senders have received the same signal.

Taken together a deviation that only changes one vote is neither beneficial if both
senders have received the same signal nor if they have received different signals. This
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precludes deviation incentives of non-experts, of experts with degree zero, as well as
of senders who consider to deviate in their voting behavior only, i.e. all deviations
that happen on the voting stage only. We now turn to deviations that also affect the
communication stage, i.e. which involve a sender who does not truthfully transmit
her signal, and show that any of those is neither beneficial.12

Deviations on both stages. Consider a sender j ∈ V with dj > 0. This expert
has (3 × 3)2 = 81 strategies because she chooses one of three messages and one of
three voting actions after receiving one of two signals.13 To evaluate different strate-
gies we can assume w.l.o.g. that the expert has received signal A∗ because neither
the utility function nor the strategy profile depends on the label of the alternatives.
This reduces the number of strategies to the following nine: (mj(A

∗), vj(A
∗)) ∈

{(A,A), (A,B), (A, ∅), (B,A), (B,B), (B, ∅), (∅, A), (∅, B), (∅, ∅)}. The first strategy
(A,A) is sincere and hence not a deviation. The strategies (A,B) and (A, ∅) only
involve deviations on the voting stage and are hence not beneficial by the paragraph
above. This leads to the following six remaining deviations σ̃ and their correspond-
ing expected utilities EU(σ̃t):14

1. Sender j sends the opposite message and votes the signal.

EU(σ̃t) = p2
2t+1∑
k=t

(
2t+ 1

k

)
pk(1−p)2t+1−k+p(1−p)+(1−p)2

2t+1∑
k=t+2

(
2t+ 1

k

)
pk(1−p) (B.7)

2. Sender j sends the opposite message and votes the opposite.

EU(σ̃t) = [p2 + (1− p)2]
2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k + p(1− p) (B.8)

3. Sender j sends the opposite message and abstains.

EU(σ̃t) = p2

[
1

2

(
2t+ 1

t

)
pt(1− p)t+1 +

2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k

]

+ p(1− p) + (1− p)2

[
1

2

(
2t+ 1

t+ 1

)
pt+1(1− p)t +

2t+1∑
k=t+2

(
2t+ 1

k

)
pk(1− p)2t+1−k

]
,

12For large t this is simple to show. In the case in which the deviating agent receives the correct
signal, say A∗, and the other sender receives the incorrect signal, the probability that the outcome
is A approaches zero for growing t. Hence, the expected utility of any such deviation is bounded
from above by limt→∞EU(σ̃t) ≤ 1− p(1− p)2 < 1− (1− p)2 = limt→∞EU(σ̂t).

13In general, voters with positive degree di > 0 have more pure strategies. In this example, the
senders are linked to non-experts (i.e voters i with pi = 0.5) who are assumed by convention not
to send a message under σ̂t. Since a message of an uninformed voter is meaningless, a change of
convention would not affect the result.

14Deviations that involve to vote and/or communicate an alternative unconditionally, i.e. inde-
pendent of the signal, need not be considered here because of the symmetry between the alter-
natives. Indeed, if it is beneficial to vote B after receiving A∗, then it is also beneficial to vote
A after receiving B∗, which is to vote the opposite of the signal. Similarly, there is no need to
consider strategies that involve the empty message and/or to abstain only after one of the two
signals. Indeed, if it is beneficial e.g. to abstain after having received signal A∗, then it is also
beneficial to abstain after having received signal B∗, which is to abstain unconditionally. Hence,
if none of the six symmetric deviations is an improvement over σ̂t, then neither is a deviation that
treats the alternatives A and B asymmetrically.
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which is equation B.9

4. Sender j sends the empty message and votes the signal.

EU(σ̃t) = p2 + p(1− p)p2t+1 + p(1− p)
2t+1∑
k=1

(
2t+ 1

k

)
pk(1− p)2t+1−k (B.10)

5. Sender j sends the empty message and votes the opposite.

EU(σ̃t) = p2

2t+1∑
k=1

(
2t+ 1

k

)
pk(1− p)2t+1−k + p(1− p) + (1− p)2p2t+1 (B.11)

6. Sender j sends the empty message and abstains.

EU(σ̃t) = p2[1− 1

2
(1−p)2t+1] +p(1−p)1

2
p2t+1 +p(1−p)[1− 1

2
(1−p)2t+1] + (1−p)2 1

2
p2t+1

(B.12)

The derivation of the expressions (B.7)-(B.12) is shown below. We can then compare
the expected utility EU(σ̃t) of each deviation, which is given by (B.7)-(B.12), with
the expected utility of the sincere strategy profile EU(σ̂t), which is given by (B.6).

Consider, for instance, the fifth deviation: Sender j sends the empty message
and votes the opposite of the signal. There are 3 + 4t votes and 2 + 2t is a majority.
Denote by (sj, sk) the signals of the two senders. There are four possibilities.

• (A∗, A∗): A wins if there are at least 2 + 2t − (1 + 2t) = 1 A∗-signals among
the experts of degree zero.

• (A∗, B∗): A never wins since B receives at least 2 + 2t votes.

• (B∗, A∗): A wins since it receives at least 2 + 2t votes.

• (B∗, B∗): A wins if there are at least 2 + 2t− 1 = 2t+ 1 A∗-signals among the
experts of degree zero, i.e. all of them have signal A∗.

We now show that this deviation is not beneficial by considering the change in
expert j’s expected utility (which is the expected utility of every agent). Supposing
that the true state is A, the expected utility is the likelihood that A is indeed
implemented. Hence,

EU(σ̃t) = p2

2t+1∑
k=1

(
2t+ 1

k

)
pk(1− p)2t+1−k + p(1− p) ∗ 0 + p(1− p) ∗ 1 + (1− p)2p2t+1,

which directly simplifies to (B.11).
For the upcoming simplifications we use the following two properties:

1.
∑2t+1

k=0

(
2t+1
k

)
pk(1− p)2t+1−k = 1 and

2.
(

2t+1
k

)
=
(

2t+1
2t+1−k

)
for any k = 0, ..., 2t+ 1.
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Let ∆ := EU(σ̂t)− EU(σ̃t). Then

∆ = p2

[
1−

2t+1∑
k=1

(...)

]
+p(1−p)

[
2

2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k − 1

]
−(1−p)2p2t+1

∆ = p2

[
2t+1∑
k=0

(...)−
2t+1∑
k=1

(...)

]
+ p(1− p)

[
2

2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k − 1

]
−(1− p)2p2t+1

∆ = p2(1− p)2t+1 + p(1− p)

[
2t+1∑
k=t+1

(...)−
2t+1∑
k=0

(...)

]
︸ ︷︷ ︸

=−
∑t

k=0(...)

+ p(1− p)
2t+1∑
k=t+1

(...)− (1− p)2p2t+1

︸ ︷︷ ︸
≥p(1−p)

∑2t
k=t+1(...)

To simplify the last part of the equation notice the following:

• First,
∑2t+1

k=t+1(pk(1− p)2t+1−k =
∑2t

k=t(p
k(1− p)2t+1−k +

(
2t+1
2t+1

)
p2t+1(1− p)0.

• Second,
(

2t+1
2t+1

)
p2t+1(1− p)0 = p2t+1.

• Third, p(1− p)p2t+1 − (1− p)2p2t+1 = [p(1− p)− (1− p2)]p2t+1 ≥ 0.

Thus,

∆ ≥ p2(1− p)2t+1 − p(1− p)
t∑

k=0

(
2t+ 1

k

)
pk(1− p)2t+1−k + p(1− p)

2t∑
k=t+1

(...)

∆ ≥ p2(1− p)2t+1 − p(1− p)
(

2t+ 1

0

)
p0(1− p)2t+1︸ ︷︷ ︸

≥0

−p(1− p)
t∑

k=1

(...) + p(1− p)
2t∑

k=t+1

(...)

∆ ≥ p(1− p)︸ ︷︷ ︸
≥0

[
2t∑

k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k −

t∑
k=1

(
2t+ 1

k

)
pk(1− p)2t+1−k

]

Hence, ∆ ≥ 0 if

2t∑
k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k ≥

t∑
k=1

(
2t+ 1

k

)
pk(1− p)2t+1−k. (B.13)

To show that inequality B.13 holds, we substitute k in the first sum by l ≡ 2t+1−k
and consistently sum over l = 1, ..., t (instead over k = t + 1, ..., 2t). Moreover, we
use

(
2t+1
k

)
=
(

2t+1
2t+1−k

)
.

t∑
l=1

(
2t+ 1

l

)
p2t+1−l(1− p)l −

t∑
k=1

(
2t+ 1

k

)
pk(1− p)2t+1−k ≥ 0

t∑
l=1

(
2t+ 1

l

)(
p2t+1−l(1− p)l − pl(1− p)2t+1−l) ≥ 0.
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For every l = 1, ..., t, we have 2t + 1 − l > l. This implies for the expression in
brackets that the first product (p2t+1−l(1 − p)l) is larger than the second product
(pl(1− p)2t+1−l). Hence, the inequality above holds, which implies inequality B.13.
Thus, EU(σ̂t) ≥ EU(σ̃t) and hence this deviation σ̃t is not beneficial.

Using the same techniques as for the deviation above, we will show for the other
five deviations σ̃t that EU(σ̃t) ≤ EU(σ̂t).

1. Sender j sends the opposite message and votes the signal. There are 3 + 6t
votes and 2 + 3t is a majority.

• (A∗, A∗): A wins if there are at least 2 + 3t − (2 + 2t) = t A∗-signals
among the experts of degree zero.

• (A∗, B∗): A never wins since 1 + 1 + 2t < 2 + 3t.

• (B∗, A∗): A wins since 1 + 4t ≥ 2 + 3t.

• (B∗, B∗): A wins if there are at least 2 + 3t−2t = 2 + t A∗-signals among
the experts of degree zero.

EU(σ̃t) = p2
2t+1∑
k=t

(
2t+ 1

k

)
pk(1−p)2t+1−k+p(1−p)∗0+p(1−p)∗1+(1−p)2

2t+1∑
k=t+2

(
2t+ 1

k

)
pk(1−p)

Let ∆ := EU(σ̂t)− EU(σ̃t).

∆ = p2[1−
2t+1∑
k=t

(...)] + p(1− p)

[
2

2t+1∑
k=t+1

(...)− 1

]
− (1− p)2

2t+1∑
k=t+2

(...)

∆ = p2

[
2t+1∑
k=0

(...)−
2t+1∑
k=t

(...)

]
+ p(1− p)

[
2t+1∑
k=t+1

(...)−
2t+1∑
k=0

(...)

]
+

p(1− p)
2t+1∑
k=t+2

(...)− (1− p)2

2t+1∑
k=t+2

(...)︸ ︷︷ ︸
≥0

+p(1− p)
(

2t+ 1

t+ 1

)
pt+1(1− p)t

∆ ≥ p2

t−1∑
k=0

(...)− p(1− p)
t∑

k=0

(...)︸ ︷︷ ︸
≥−p(1−p)(2t+1

t )pt(1−p)t+1

+p(1− p)
(

2t+ 1

t+ 1

)
pt+1(1− p)t

∆ ≥ p(1− p)
(

2t+ 1

t+ 1

)
pt+1(1− p)t − p(1− p)

(
2t+ 1

t

)
pt(1− p)t+1

Hence ∆ ≥ 0 if(
2t+ 1

t+ 1

)
pt+1(1− p)t ≥

(
2t+ 1

t

)
pt(1− p)t+1

pt+1(1− p)t ≥ pt(1− p)t+1

p ≥ 1− p,

which is true.
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2. Sender j sends the opposite message and votes the opposite of the signal.
There are 3 + 6t votes and 2 + 3t is a majority.

• (A∗, A∗): A wins if there are at least 2 + 3t− (1 + 2t) = 1 + t A∗-signals
among the experts of degree zero.

• (A∗, B∗): A never wins since 1 + 2t < 2 + 3t.

• (B∗, A∗): A wins since 2 + 4t ≥ 2 + 3t.

• (B∗, B∗): A wins if there are at least 2 + 3t − 1 + 2t = 1 + t A∗-signals
among the experts of degree zero.

EU(σ̃t) = p2
2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1−p)2t+1−k+p(1−p)∗0+p(1−p)∗1+(1−p)2

2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1−p)

EU(σ̃t) = [p2 + (1− p)2]
2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k + p(1− p)

Let ∆ := EU(σ̂t)− EU(σ̃t).

∆ = p2[1−
2t+1∑
k=t+1

(...)]− (1− p)2

2t+1∑
k=t+1

(...) + p(1− p)

[
2

2t+1∑
k=t+1

(...)− 1

]

∆ = [p(1− p)− (1− p)2]
2t+1∑
k=t+1

(...) + [p2 − p(1− p)[1−
2t+1∑
k=t+1

(...)] ≥ 0

which is positive, since both summands are positive.

3. Sender j sends the opposite message and abstains. There are 2 + 6t votes and
1 + 3t is a tie.

• (A∗, A∗): there is a tie if there are 1 + 3t− (1 + 2t) = t A∗-signals among
the experts of degree zero. For more, A wins.

• (A∗, B∗): A never wins since 1 + 2t < 1 + 3t.

• (B∗, A∗): A wins since 1 + 4t > 1 + 3t.

• (B∗, B∗): there is a tie if there are 1 + 3t− 2t = 1 + t A∗-signals among
the experts of degree zero. If there are k ≥= 2 + t A∗-signals A wins.

EU(σ̃t) = p2

[
1

2

(
2t+ 1

t

)
pt(1− p)t+1 +

2t+1∑
k=t+1

(
2t+ 1

k

)
pk(1− p)2t+1−k

]
+p(1−p)∗0

+p(1−p)∗1+(1−p)2

[
1

2

(
2t+ 1

t+ 1

)
pt+1(1− p)t +

2t+1∑
k=t+2

(
2t+ 1

k

)
pk(1− p)2t+1−k

]
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Let ∆ := EU(σ̂t)− EU(σ̃t).

∆ = p2[1− [
1

2
...]] + p(1− p)

[
2

2t+1∑
k=t+1

(...)− 1

]
− (1− p)2[

1

2
...],

∆ = p2

[
t∑

k=0

(...)− 1

2

(
2t+ 1

t

)
pt(1− p)t+1

]
− p(1− p)

t∑
k=0

(...) + p(1− p)
2t+1∑
k=t+1

(...)−

(1− p)2 1

2

(
2t+ 1

t+ 1

)
pt+1(1− p)t − (1− p)2

2t+1∑
k=t+2

(...)

∆ = p2

t∑
k=0

(...)− p(1− p)
t∑

k=0

(...)︸ ︷︷ ︸
≥0

+ p(1− p)
2t+1∑
k=t+1

(...)− (1− p)2

2t+1∑
k=t+2

(...)︸ ︷︷ ︸
≥p(1−p)(2t+1

t+1 )pt+1(1−p)t

−p2 1

2

(
2t+ 1

t

)
pt(1− p)t+1 − (1− p)2 1

2

(
2t+ 1

t+ 1

)
pt+1(1− p)t

∆ ≥ p(1− p)
(

2t+ 1

t+ 1

)
pt+1(1− p)t − (1− p)2 1

2

(
2t+ 1

t+ 1

)
pt+1(1− p)t︸ ︷︷ ︸

≥ 1
2
p(1−p)(2t+1

t+1 )pt+1(1−p)t

−p2 1

2

(
2t+ 1

t

)
pt(1− p)t+1

∆ ≥ 1

2
p(1− p)

(
2t+ 1

t+ 1

)
pt+1(1− p)t − 1

2
p2

(
2t+ 1

t

)
pt(1− p)t+1

Hence ∆ ≥ 0 if

p(1− p)
(

2t+ 1

t+ 1

)
pt+1(1− p)t ≥ p2

(
2t+ 1

t

)
pt(1− p)t+1

p(1− p)pt+1(1− p)t ≥ p2pt(1− p)t+1

pt+2(1− p)t+1 ≥ pt+2(1− p)t+1,

which is true.

4. Sender j sends the empty message and votes the signal. There are 3+4t votes
and 2 + 2t is a majority. If both senders receive the same signal, say A∗, A
wins since there are at least 2+2t A-votes. Hence, the outcome is not different
from σ̂t. If both senders receive different signals, then the outcome under σ̂t

is optimal such that there cannot be a beneficial deviation.

5. Sender j sends the empty message and votes the opposite of the signal. It has
been already shown above that this deviation is not beneficial.

6. Sender j sends the empty message and abstains. Then there are 2 + 4t votes
and 1 + 2t is just half of all votes.
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• (A∗, A∗): there is a tie if there are 1 + 2t− (1 + 2t) = 0 A∗-signals among
the experts of degree zero. Otherwise, A wins.

• (A∗, B∗): there is a tie if there are 1 + 2t− 0 = 1 + 2t A∗-signals among
the experts of degree zero. Otherwise, B wins.

• (B∗, A∗): there is a tie if there are 1 + 2t− (1 + 2t) = 0 A∗-signals among
the experts of degree zero. Otherwise A wins.

• (B∗, B∗): there is a tie if there are 1 + 2t− 0 = 1 + 2t A∗-signals among
the experts of degree zero. Otherwise, B wins.

EU(σ̃t) = p2[1−1

2
(1−p)2t+1]+p(1−p)1

2
p2t+1+p(1−p)[1−1

2
(1−p)2t+1]+(1−p)2 1

2
p2t+1

Let ∆ := EU(σ̂t)− EU(σ̃t).

∆ = p2[
1

2
(1−p)2t+1]+p(1−p)

[
2

2t+1∑
k=t+1

(...)− 1 +
1

2
p2t+1 − 1

2
(1− p)2t+1

]
−(1−p)2 1

2
p2t+1

∆ = (p2 − p(1− p))1

2
(1− p)2t+1︸ ︷︷ ︸

≥0

+p(1− p)

[
2

2t+1∑
k=t+1

(...)− 1 +
1

2
p2t+1

]
− (1− p)2 1

2
p2t+1

∆ ≥ p(1− p)

[
2t+1∑
k=t+1

(...) +
2t+1∑
k=t+1

(...)−
2t+1∑
k=0

(...) +
1

2
p2t+1

]
− (1− p)2 1

2
p2t+1

∆ ≥ p(1− p)

[
2t+1∑
k=t+1

(...)−
t∑
l=0

(...)

]
︸ ︷︷ ︸

≥0

+ (p(1− p)− (1− p)2)︸ ︷︷ ︸
≥0

1

2
p2t+1

∆ ≥ p(1− p)

[
2t+1∑
k=t+1

(
2t+ 1

k

)
pl(1− p)2t+1−k −

t∑
l=0

(
2t+ 1

l

)
pl(1− p)2t+1−l

]

∆ ≥ p(1− p)

[
t∑
l=0

(
2t+ 1

l

)
p2t+1−l(1− p)l −

t∑
l=0

(
2t+ 1

l

)
pl(1− p)2t+1−l

]

∆ ≥ p(1− p)

[
t∑
l=0

(
2t+ 1

l

)(
p2t+1−l(1− p)l − pl(1− p)2t+1−l)]

︸ ︷︷ ︸
≥0

For every l = 1, ..., t, we have 2t + 1 − l > l. This implies for the expression
in brackets that the first product (p2t+1−l(1 − p)l) is larger than the second
product (pl(1− p)2t+1−l). Thus, the expression in brackets is positive.
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D Instructions

The original instructions are written in German and can be requested from the
authors. On the next pages we provide an English version which is a sentence-by-
sentence translation of the original instructions, first for Study I, then for Study II.
The instructions of each study are followed by the questions of comprehension.
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SVCnet rel. 

1 
 

Welcome to today’s experiment! 

Please note that no communication is allowed from now on and during the whole experiment. If you 
have a question please raise your hand from the cabin, one of the experimenters will then come to 
you. The use of cell phones, smart phones, tablets, or similar devices is prohibited during the entire 
experiment. Please note that a violation of this rule leads to exclusion from the experiment and from 
any payments. 

All decisions are taken anonymously, i.e. none of the other participants comes to know the identity 
of the others. The payoff is also conducted anonymously at the end of the experiment. 

 

Instructions 

 
In this experiment you will choose along with your group one out of two alternatives whereupon just 
one  alternative  is  correct  and  the other  is wrong. Only  the  correct  alternative  leads  to  a positive 
payoff  for each member of  the group. Some members of  the group will receive  information about 
the  correct alternative. This  information  is accurate  in 60 out of 100  cases. The group decides by 
voting  which  alternative  will  be  implemented.  The  group  is  furthermore  arranged  in  a 
communication network. Certain members of the group can – depending on the network structure – 
transmit a message to other members before the group ballots for the alternatives.  

The sequence of each individual round consists of the following 4 parts. 

 

1. Information 

You will receive the role of an Informed or an Uninformed at random (and you will keep it during the 
entire experiment). There are two alternatives: alternative “circle” and alternative “triangle”. At the 
beginning  of  each  round  one  of  the  two  alternatives will  be  assigned  at  random  and with  equal 
likelihood  as  the  correct  alternative.  The  “Informed”  receive  information  about  the  correct 
alternative which is accurate in 60 out of 100 cases. (The Informed will not necessarily all receive the 
same  information).  The  “Uninformed”  will  not  receive  any  information  about  what  the  correct 
alternative is. 
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2. Communication 

You will randomly be divided  into groups of 9 members. A group  is composed of 5  Informed and 4 
Uninformed. All group members are arranged  in a  communication network. At  the beginning of a 
round  you  get  to  know  the network  structure and  your position  in  the network. You  can  see  the 
possible networks pictured in the figure below.  

                

5  Informed  receive  in  randomized  arrangement  the  positions  Above  1  to  5  in  the  network.  4 
Uninformed receive in randomized arrangement the positions Below 1 to 4 in the network. Everyone 
knows therefore that someone with an upper position is an Informed and that someone with a lower 
position  is an Uninformed.   The network structure  reveals who can communicate with whom. The 
Uninformed can be recipients but not senders of a message.  The Informed who are in the position of 
a sender send either the message “circle” or the message “triangle” or they don’t send any message 
to their recipient(s).  Each sender can send exactly one message to all of its (his/her) recipients. Not 
every  Informed  is  necessarily  a  sender.  This  depends  on  the  network  structure  and  the  network 
position. The connecting  lines between upper and  lower positions  in  the network display who can 
send a message to whom. 
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3. Voting 

You  can decide  to vote  for “circle,”  to abstain  from voting, or  to vote  for “triangle.” The 2 Circle‐
advocates  always  vote  for  “circle”  and  the  2  Triangle‐advocates  always  for  “triangle.”  The  voting 
result  in  the  group  is  the  alternative  (circle or  triangle) with  the most  votes.  In  case of  a  tie  the 
computer will pick one of the two alternatives at random and with the same probability. 

 

 

4. Outcome 

At the end of the round you will get to know the voting outcome as well as the right alternative. If 
they match, e.g. the voting outcome  is triangle and the right alternative  is triangle, you will receive 
100 points. Otherwise you will not receive any points. At the end of 40 rounds 3 rounds will be drawn 
randomly, which are then relevant for the payoffs. The rate of exchange between points and Euro is 
the  following:  20  points  correspond  to  1  Euro.  You  will  receive  5  Euro  additionally  for  your 
participation in the experiment.   
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Procedure of the experiment 

40 rounds will be played  in total. The composition of the group changes from round to round. The 
network structure changes every 5 rounds. There will be a short questionnaire subsequent to the 40 
rounds of  the experiment. Prior  to  the 40  rounds of  the experiment 4  sample  rounds are played. 
These are not payoff‐relevant. (In each sample round a different network is introduced.) 

Summary of the procedure of the experiment:  

1. Reading of the instructions 
2. Questions of comprehension concerning the instructions 
3. 4 sample rounds 
4. 40 EXPERIMENTAL ROUNDS 
5. Questionnaire 
6. Payoffs 

If you have a question, please raise your hand from the cabin, we will then come to you. 

 



 

Comprehension questions 

1. Which of the following statements is correct? (Please checkmark) 
a. The role of the Informed/Uninformed changes from round to round.  
b. The group affiliation changes from round to round. 
c. The network changes from round to round. 

 
2. Which of the following statements is correct? (Please checkmark) 

a. In each round either the alternative „circle” or the alternative „triangle“ is correct, namely with a 
probability of 50% no matter which alternative has been most frequently correct in the previous rounds. 

b.  If „triangle“ was 7 times correct in the previous 10 rounds and „circle“ only 3 times, then in the current 
round it is more likely that „circle“ is correct instead of „triangle“. 

c. If „circle“ was 7 times correct in the previous 10 rounds and „triangle“ only 3 times, then in the current 
round it is more likely that „circle“ is correct instead of „triangle“.  
 

3. Which of the following statements is correct? (Please checkmark) 
a. The „Informed“ in the group know for sure which alternative is correct. 
b. All „Informed“ in the group share the same opinion about what the correct alternative is. 
c. Each „Informed“ in the group receives some information about which alternative is correct and this 

information is accurate in 60 out of 100 cases. 
 

4. Which of the following statements is correct? (Please checkmark) 
a. Each „Informed“ is a sender. 
b. Each sender is an „Informed.“ 
c. A sender can be an „Informed“ or an “Uninformed.” 

 
5. Which of the following statements is correct? (Please checkmark) 

a. If the correct alternative is „circle“ and you vote for circle, you will always receive 100 points. 
b. If the correct alternative is „circle“ and a majority of the participants vote for circle, you will receive 100 

points. 
c. If the correct alternative is „circle“ and a majority of the participants vote for triangle, you will receive 

100 points. 
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Welcome to today’s experiment! 

Please note that no communication is allowed from now on and during the whole experiment. If you 

have a question please raise your hand from the cabin, one of the experimenters will then come to 

you. The use of cell phones, smart phones, tablets, or similar devices is prohibited during the entire 

experiment. Please note that a violation of this rule leads to exclusion from the experiment and from 

any payments. 

All decisions are taken anonymously, i.e. none of the other participants comes to know the identity 

of the others. The payoff is also conducted anonymously at the end of the experiment. 

 

Instructions 

 

In this experiment you will choose along with your group one out of two alternatives whereupon just 

one  alternative  is  correct  and  the other  is wrong. Only  the  correct  alternative  leads  to  a positive 

payoff  for each member of  the group. Some members of  the group will receive  information about 

the  correct alternative. This  information  is accurate  in 80 out of 100  cases. The group decides by 

voting  which  alternative  will  be  implemented.  The  group  is  furthermore  arranged  in  a 

communication network. Certain members of the group can – depending on the network structure – 

transmit a message to other members before the group ballots for the alternatives.  

The sequence of each individual round consists of the following 4 parts. 

 

1. Information 

You will receive the role of an Informed or an Uninformed at random (and you will keep it during the 

entire experiment). There are two alternatives: alternative “circle” and alternative “triangle”. At the 

beginning  of  each  round  one  of  the  two  alternatives will  be  assigned  at  random  and with  equal 

likelihood  as  the  correct  alternative.  The  “Informed”  receive  information  about  the  correct 

alternative which is accurate in 80 out of 100 cases. (The Informed will not necessarily all receive the 

same  information).  The  “Uninformed”  will  not  receive  any  information  about  what  the  correct 

alternative is. 
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2. Communication 

You will randomly be divided into groups of 11 members out of whom 7 are real participants and the 

remaining  4  being  represented  by  the  computer.  A  group  is  composed  of  3  Informed  and  4 

Uninformed  (a  total of 7  real participants of  the  experiment)  as well  as 2 Circle‐advocates  and 2 

Triangle‐advocates  (group  members  represented  by  the  computer).  The  Circle‐advocates 

categorically vote for “circle;” and the Triangle‐advocates categorically vote for “triangle.” All group 

members are arranged in a communication network. At the beginning of a round you get to know the 

network structure and your position  in the network. You can see the possible networks pictured  in 

the figure below. 

 

3  Informed and 4 Advocates receive  in randomized arrangement  the positions Above 1  to 7  in  the 

network.  4  Uninformed  receive  in  randomized  arrangement  the  positions  Below  1  to  4  in  the 

network. Everyone knows therefore that someone with an upper position is either an Informed or an 

Advocate and that someone with a  lower position  is an Uninformed. The network structure reveals 

who can communicate with whom. The Uninformed can be recipients but not senders of a message. 

Sender of the message  is – depending on the network position – an  Informed or an Advocate. The 

Circle‐advocates send the message “circle” to their recipient(s) and the Triangle‐advocates send the 

message “triangle.” The Informed send either the message “circle” or the message “triangle” or they 

don’t send any message to their recipient(s). Each sender can send exactly one message to all of its 

(his/her)  recipients. Not every  Informed or Advocate  is necessarily a  sender. This depends on  the 

network  structure  and  the  network  position.  The  connecting  lines  between  upper  and  lower 

positions in the network display who can send a message to whom. 
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3. Voting 

You  can decide  to vote  for “circle,”  to abstain  from voting, or  to vote  for “triangle.” The 2 Circle‐

advocates  always  vote  for  “circle”  and  the  2  Triangle‐advocates  always  for  “triangle.”  The  voting 

result  in  the  group  is  the  alternative  (circle or  triangle) with  the most  votes.  In  case of  a  tie  the 

computer will pick one of the two alternatives at random and with the same probability. 

 

 

4. Outcome 

At the end of the round you will get to know the voting outcome as well as the right alternative. If 

they match, e.g. the voting outcome  is triangle and the right alternative  is triangle, you will receive 

100 points. Otherwise you will not receive any points. At the end of 40 rounds 3 rounds will be drawn 

randomly, which are then relevant for the payoffs. The rate of exchange between points and Euro is 

the  following:  20  points  correspond  to  1  Euro.  You  will  receive  5  Euro  additionally  for  your 

participation in the experiment.   
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Procedure of the experiment 

40 rounds will be played  in total. The composition of the group changes from round to round. The 

network structure changes every 5 rounds. There will be a short questionnaire subsequent to the 40 

rounds of  the experiment. Prior  to  the 40  rounds of  the experiment 4  sample  rounds are played. 

These are not payoff‐relevant. (In each sample round a different network is introduced.) 

Summary of the procedure of the experiment:  

1. Reading of the instructions 

2. Questions of comprehension concerning the instructions 

3. 4 sample rounds 

4. 40 EXPERIMENTAL ROUNDS 

5. Questionnaire 

6. Payoffs 

If you have a question, please raise your hand from the cabin, we will then come to you. 



 

Comprehension questions 

1. Which of the following statements is correct? (Please checkmark) 

a. The role of the Informed/Uninformed changes from round to round.  

b. The group affiliation changes from round to round. 

c. The network changes from round to round. 

 

2. Which of the following statements is correct? (Please checkmark) 

a. In each round either the alternative „circle” or the alternative „triangle“ is correct, namely with a 

probability of 50% no matter which alternative has been most frequently correct in the previous rounds. 

b.  If „triangle“ was 7 times correct in the previous 10 rounds and „circle“ only 3 times, then in the current 

round it is more likely that „circle“ is correct instead of „triangle“. 

c. If „circle“ was 7 times correct in the previous 10 rounds and „triangle“ only 3 times, then in the current 

round it is more likely that „circle“ is correct instead of „triangle“.  

 

3. Which of the following statements is correct? (Please checkmark) 

a. In each group there are 2 persons represented by the computer who always vote for “circle” and 2 

persons likewise represented by the computer who always vote for “triangle”. 

b. In each group there are 4 persons represented by the computer who always vote for “circle”. 

c. In each group there are 4 persons represented by the computer who always vote for “triangle”. 

 

4. Which of the following statements is correct? (Please checkmark) 

a. The „Informed“ in the group know for sure which alternative is correct. 

b. All „Informed“ in the group share the same opinion about what the correct alternative is. 

c. Each „Informed“ in the group receives some information about which alternative is correct and this 

information is accurate in 80 out of 100 cases. 

 

5. Which of the following statements is correct? (Please checkmark) 

a. Each „Informed“ is a sender. 

b. Each sender is an „Informed.“ 

c. A sender can be an „Informed“, a Circle‐Advocate or a Triangle‐Advocate.  

 

6. Consider a Circle‐Advocate who can send a message. Which of the following statements is correct? (Please 

checkmark) 

a. The Circle‐Advocate always sends the message „circle“. 

b. The Circle‐Advocate sometimes sends the message “triangle.“ 

c. The Circle‐Advocate sometimes does not send any message.  

 

7. Which of the following statements is correct? (Please checkmark) 

a. If the correct alternative is „circle“ and you vote for circle, you will always receive 100 points. 

b. If the correct alternative is „circle“ and a majority of the participants vote for circle, you will receive 100 

points. 

c. If the correct alternative is „circle“ and a majority of the participants vote for triangle, you will receive 

100 points. 

 


